If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2z^2-5z+3=0
a = -2; b = -5; c = +3;
Δ = b2-4ac
Δ = -52-4·(-2)·3
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-7}{2*-2}=\frac{-2}{-4} =1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+7}{2*-2}=\frac{12}{-4} =-3 $
| x=(4x+33) | | 9w=w+94 | | (5x-2)=(5x+2) | | 7-(x-3)=2(x-4 | | 5x-9=15-1 | | 6x+4+11x+11=180 | | 8=u-8/8 | | (x-5)+8=-14 | | 16n2-9=0 | | x+2x+40+x-20=180 | | 0.50x+4=0.25x+8 | | 3x-(-2x+10)=25 | | 2/5x+2x-8=26 | | 39+v=-31.666666 | | 0.50x+4=0.25+8 | | 6-(-3h)=18 | | 4y+15=6y-4y | | 4-2x=-3-3 | | 0=w/4+(-4) | | 2x+200=18- | | 2x-9=x+31 | | -2n=-11 | | n-(-11.3)=0.9 | | -2y+1=1-5 | | 5=(-y)+(-3) | | (2x+29)=135 | | 19x+2=21 | | 14+10u=13u−19 | | -10x+17-17x-1=32x+1 | | 4=3.1=y | | 6x+13=4x | | 6x+7=20=2x |